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ABSTRACT 
Current and future remote space missions, such as the 

aerial exploration of Titan by an aerobot, have the 

potential for collecting more data than can be returned 

for human observation. To relieve this bottleneck, we 

develop sub-polynomial algorithms for autonomously 

clustering aerial imagery. Specifically, we construct an 

Earth-based aerial image dataset as a Titan analogue. 

We compare performances of k-means-based 

clusterings against expert clustering. Among 21 low-

level image descriptors accounting for color, texture, 

temporal and spatial arrangement, 5 are found which 

allow for clusterings that more closely match that of an 

expert than do clusterings based on random or periodic 

sampling. Results show potential for allowing scientists 

to infer semantic content of all images by downlinking 

representative images from each cluster. This allows for 

more efficient use of downlink bandwidth, and therefore 

higher quality science return in remote space 

exploration. 

 

1. INTRODUCTION 

NASA’s Solar System Exploration Strategic Roadmap 

[14] outlines the role of aerial vehicles in the future 

exploration of the solar system, particularly with respect 

to missions to Venus or Titan. In the case of Saturn’s 

moon, Titan, an aerobot (blimp) would collect remotely-

sensed data some 8km above ground level. It would be 

capable of circumnavigating the moon within a six 

month mission. The Cassini-Huygens mission has 

shown that Titan contains rich and varied landscapes 

(Figure 1), including smooth and rough terrain, sand 

dunes, ethane lakes, shorelines, craters, and possibly 

cryovolcanoes. Additionally, there is a significant cloud 

presence. With such Earth-like diversity, Titan is of 

great scientific interest. 

 

Data yield for a Titan mission would be limited not by 

the rate of image acquisition, but rather by 

communications constraints.  Communication with 

Earth would be subject to latencies that exceed two 

hours. Downlink bandwidth is expected to be 4500 

bits/second, or 130Mbits / day assuming an 8 hour 

transmission window [7]. These considerations motivate  

 

 
Figure 1: Cassini-Huygens images showing the diversity of 

Saturn’s moon, Titan. Top-row images are from the 

Huygens probe and show a field containing frozen rocks 

with horizon, a hill etched by hydrocarbon rain, and part 

of a dried riverbed, respectively. Bottom-row images are 

from Cassini radar data and show sand dunes, and 

hydrocarbon liquid bodies, respectively. 

 

autonomous methods of classifying aerial image data 

that could preselect the most scientifically meaningful 

data for return to Earth.  

 

Previous work in onboard data understanding has 

focused on rover  and satellite platforms. For the Mars 

Exploration Rovers (MER), science targets such as dust 

devils or rocks of specific size, albedo, and shape can be 

automatically recognized [3]. For the EO-1 Satellite, 

hazardous events such as fires, floods, and volcanic 

activities are detected and pertinent data downlinked. 

[5]. In both cases, targets can be detected without 

human direction, allowing for automatic data 

prioritization and improved science return.  

 

Additional challenges exist for an aerobot; it would be 

in constant motion, but difficult to control due to 

unpredictable atmospheric currents. Processing would 

be shared between continuous autonomous control and 

data processing, but would be limited due to radiation 

hardening and energy constraints. A typical radiation-

hardened processor used in space, the RAD6000, is 

clocked around 25MHz, has 128MB RAM, and can 
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maximally perform 35 MIPS—several orders of 

magnitude lower than modern computers. These 

limitations, combined with the diversity of surface 

features the aerobot might encounter, favors a 

computationally inexpensive, unsupervised approach 

that makes few assumptions about the image content the 

aerobot will encounter.  Unsupervised methods have 

been proposed for selective data return applications in 

the rover domain. [2, 15]; they have also been widely 

used for image search and retrieval [4] and image 

sequence representation [10, 11] Clustering has been 

applied to aerial imagery [8], though not in an online 

fashion to our knowledge.  

 

By clustering images as they are collected, an aerobot 

mission can analyze greater data volume.  For example, 

the aerobot can downlink the r most exemplary images 

closest to each cluster centroid, providing a broad 

overview of the types of data collected. If some clusters 

prove to be consistently interesting then all images from 

those clusters can be prioritized for downlink. Finally, 

scientists can also opt to downlink images most 

dissimilar to the all others—outliers or anomalies. In 

summary, clustering enables selective data return based 

on a representative sample, a biased sample, or outliers. 

These options provide compelling alternatives to other 

data collection methods such as returning images 

collected at periodic intervals. 

 

In this paper, we investigate the application of 

unsupervised classification for selective transmission of 

aerial image data in remote space exploration. We 

represent images in a metric space to compare their 

similarities. We identify specific image feature 

descriptors to encourage clusters based on semantic 

content such as presence of horizons, clouds, and water 

bodies.  A broad survey of different image features 

suggests several that are both computationally efficient 

for spacecraft computers and relevant to the image 

categories identified by planetary scientists. 

 

Section 2 begins by describing a small Earth-based 

aerial image dataset.  Section 3 details the low-level, 

computationally inexpensive features we consider. 

These features account for color, texture, spatial 

arrangement, and time. Section 4 details both our 

algorithmic and manual (expert) clustering methods, as 

well as the metric with which we compare them. 

Sections 5 and 6 compare the effectiveness of different 

feature and clustering parameters.  For our dataset, 

clustering based on several frequency-space features can 

more closely match an expert’s clustering than either 

periodic or random sampling. 

 

2. DATASET 

We constructed a dataset of aerial imagery using a 

consumer-grade digital camera (Canon PowerShot 

SD850 IS) with resolution limited to 1600 x 1200. A 

total of 162 images were collected during a commercial 

airline flight from New York to Los Angeles. Images 

primarily contain shots dominated by sky, horizon, or 

undeveloped land. Some contain clouds, discernable 

water bodies, developed land, or have small portions of 

the plane’s wing or window at one more edges. Figure 2 

shows example images. 

 

Factors such as varied terrain, presence of clouds, 

horizons, water bodies, and artifacts (e.g. the occasional 

window or wing obstruction) made this dataset a 

particularly appropriate Titan analogue. 

 

 
Figure 2: Exemplar images from a manual clustering 

performed by a planetary volcanologist who gave image 

clusters the names "more clouds", "rivers", "land", 

"horizon" and "desert".  

 

3. FEATURES 

We chose features to represent the color, texture, time, 

and spatial arrangement of each image. In order to 

reduce computational costs we favored simple features 

based on first- or second-order statistics that required 

little preprocessing.   

 

We split the features into four themes: edge, color, 

frequency, and time. The edge and frequency features 

correlate with image texture, color captures basic color 

statistics, and time is an integer denoting the temporal 

order of image acquisition.  

 

3A. Edge Features 

Let �  be an � � � � 3 image, and �′ be its 
� � � grayscale. Let �′′ be the resulting binary image 

from performing convolution with a Sobel operator on 

image �′. Let �	, ��  be the � � � matrices representing 
vertical and horizontal gradient responses, respectively. 

Let ∇ =  ��	� +  ��� be the � � � matrix representing 
gradient magnitudes, and � = ����2(�	 , ��) be the 



 

� � � matrix representing gradient orientations. Then 
the edge features are: 

 

 �� = �
�� ∑ �′ (edge density) 

 

�� = �
�� ∑(∇L) (mean gradient magnitude) 

 

�� =  (∇)  (gradient magnitude entropy) 

 

�! =  (�) (gradient orientation entropy) 

 

3B. Color Features 

Let "#  be the � � � matrix of pixels in band $ of �. 
Then, for all "#  the color features are: 
 

�%..' = standard-deviation("#) 
 

�(..) = mean("#) 
 

���..�� = min("#) 
 

��!..�' = max("#) 
 

3C. Frequency Features 

Let * be the resulting � � � image after the 2D Fourier 
transform on �′, and let �(*) = |*|� be the � � � power 
spectrum of *. For the normalized power spectrum 
, = -(.)

∑-(.) let /�� , �	0 be the coordinates of the pixel 
with the highest value. The frequency features are given 

by: 

 

��( = ��   peak energy X 

 

 ��1 = �	   peak energy Y 

 

 ��) =  ∑ ,�2�,	2�  (quadrant-1 energy) 

 

 ��� =  ∑ ,�3�,	2�  (quadrant-2 energy) 

 

These features were motivated by [12], which were 

found by a survey of 28 low-level frequency-space 

statistics to best discriminate a subset of the Brodatz 

textures. 

 

3D. Time Features 

Our dataset consists of an ordered sequence of 162 

images. Let �4 represent this for each image.  We 
generate an image feature based on the acquisition 

order: 

 

��� = �4   (acquisition order) 

 

3E. Spatial Features 

In addition to accounting for texture, color, and time, we 

attempt to capture the spatial distribution of image 

features. Traditional approaches use image 

segmentation or region-growing methods to find objects 

or areas of uniform color or texture.  These methods 

may be too expensive for aerobot applications. 

 

Instead, we account for spatial arrangement by splitting 

each image into � � � equal-sized subimages and 
collecting the features in each. Hence, for � = 1, we 
collect each desired feature once on the whole image, 

whereas for � = 4 we collect each feature in each of 16 
subimages (except for ���, which is never collected 
more than once).  These subimage features are 

appended into an ordered vector whose dimensionality 

grows in proportion with the number of subimages. 

 

4. CLUSTERING 

We cluster using iterative k-means per the standard 

Lloyd’s algorithm [13]. We initialize cluster centers 

using random datapoints and use a Euclidean distance 

metric to assign cluster membership.  Image features 

were standardized prior to clustering. 

 

Distances in the Euclidean space are sensitive to noisy 

or redundant dimensions.  To account for these factors 

we employed a linear dimensionality reduction using 

Principal Component Analysis (PCA) with varying 

numbers of principal components.    

 

3A. Expert Labelling 
We elicited a manual clustering of our dataset from a 

planetary volcanologist to serve as a ground-truth 

standard for evaluation.  The expert’s only formal 

introduction to the task was a three minute introduction 

to simple graphical cluster selection software, and the 

following written prompt: 

 

Suppose that the following aerial images were 

taken of an environment for which we have 

little knowledge or data. Furthermore, suppose 

that you may not be able to receive all images. 

Please sort these images into 5 groups in such a 

way that if you could only receive a small 

number of images from each group, you could 

reasonably infer the content of the remaining 

images in that group. 

 

We provided the expert a clustering tool based on a 

graphical drag-and-drop interface. As seen in Figure 3, 

the software contains three primary panes or windows. 

The leftmost window displays 160x120 thumbnails of 

unsorted images. The top-right contains a control panel 

that allows the user to name each cluster, while the 

bottom-right contains one or more scrollable 

subwindows that show the images within a cluster. The 

user drags thumbnails from, to, and between the 



 

unsorted area and cluster windows. Thumbnails could 

be enlarged to full screen with a simple click.  

 

 
Figure 3: Custom software allows for rapid manual 

clustering of images. Users drag and drop images from the 

dataset (left) to bins they create and name (right). 

 

We considered allowing the expert(s) to choose the 

number of clusters, but decided that this would provide 

too much flexibility given our intentionally vague 

prompt.  This could create confusion about clusters’ 

appropriate extent and roles.  It is especially important 

since accepted methods of interpolating multiple, non-

homogenous expert clusterings (e.g. [16]) are 

inadequate if scientists pursue multiple independent 

goals.   We settled on 5 clusters for the simple reason 

that the number of clusters should be at least an order of 

magnitude less than the size of our dataset.  The current 

study uses the data provided by a single expert. Upon 

interview, the expert felt that five was a mostly adequate 

number; six would have been ideal so that an outlier 

group could have been established. An exemplary image 

from each expert cluster is shown in Figure 2. 

 

3B. Cluster Comparisons 

We compare automatic clusterings against the expert 

standard using the information theoretic adjusted mutual 

information (AMI), which we briefly derive here. 

 

Given dataset 7 = 89�, 9�, … , 9;<, and two clusterings 
 

 = = 8=�, =�, … , =><             (1) 

 

 ? = 8?�, ?�, … , ?@<             (2) 

 

where ⋂ =#
>
#B� = ∅ , and ⋃ =#

>
#B� = 7 (e.g. the =# are a 

partitioning, or clustering, of 7, and similarly for ?). 
Then, the probability that a random data 9 ∈ 7 is also 
contained in some cluster =#  is  
 

 "F($) = |GH|
;               (3) 

 

The probability that 9 is contained in some ?I is 

 

 "J(K) = LMNL
;               (4) 

 

The joint probability that 9 ∈ =#  and 9 ∈ ?I is 
 

 "($, K) = LGH ∩ MNL
;                 (5) 

 

The mutual information is then defined as 

 

 P�(=, ?) =  ∑ ∑  @
IB�

>
#B�                (6) 

         "($, K) log T U(#,I)
UV(#)UW(I)X 

 

Mutual information quantifies how much knowing 

about one clustering tells us about the other. Though it 

is symmetric and non-negative, it is not upper-bounded 

by a constant, and so is not useful as a general metric 

for comparing clusterings. Furthermore, Vinh et al. 

demonstrate that mutual information does not take a 

constant value when comparing random clusterings, and 

tends to grow with the number of clusters [17]. They 

use a hypergeometric model of randomness to derive an 

expected value for two random clusterings.  This 

permits a correction similar to the Adjusted Rand Index 

[9] that ensures random clusterings produce a constant 

value, This correction yields the Adjusted Mutual 

Information (AMI): 

  

 YP�(=, ?) = (Z[(G,M)\ ]8Z[(G,M)<)
^_`8a(G),a(M)<\ ]8Z[(G,M)<         (7) 

 

The entropies of clusterings =, ? denote the uncertainty 
in a data point’s cluster membership: 

 

  (=) =  − ∑ "($) log "($)>
#B�               (8) 

 

  (?) =  − ∑ "(K)cde"(K)@
IB�               (9) 

 

The denominator in YP� both corrects for randomness 
and serves as a normalization, as otherwise P�(=, ?) ≤
min( (=),  (?)). Furthermore, YP�(=, ?) = 0 only 
when equal to its expected value (e.g., that expected by 

two random clusterings), and YP�(=, ?) = 1 when 
clusterings =, ? are the same.   
 

5. RESULTS 

4A. Exhaustive Parameter Search 

We begin with an exhaustive search over the parameter 

space to guide feature selection for further 

investigations.  Specifically we cluster the dataset once 

for each possible combination of the four feature themes 

(edge, color, frequency, time). We consider each theme 

as the smallest unit (rather than each individual feature), 

which yields 15 potential combinations. Finally, we use 



 

subimage decompositions of size  1, 4, 9, and 16, 
corresponding to � = 1,2,3,4.   
 

We apply PCA with different dimensionalities to 

account for the curse of dimensionality and the potential 

for redundancy within, or interplay between, themes 

(e.g. the possibility that one edge feature and one color 

feature are most discriminative). We vary the number of 

principal components used from 

1, 2, … ,19, 20, 24, 28, … , 96, 100 or up to the 
dimensionality of the base feature set. Finally, we also 

vary the number of clusters, n, over 3,5,7,9,11.  
 

In summary, we varied the following cluster parameters: 

• The 15 theme combinations of {edge, 

color, frequency, time}. 

• Using PCA vs. not using PCA. 

• When using PCA, the number of principal 

components from 1, … , 100. 
• Number of clusters, n, from 83,5,7,9,11<. 

 

 
Figure 4: Best clustering performances among feature 

subsets over increasing numbers of subimages. Random 

clustering is also displayed. 

Figure 5 summarizes the results in Figure 4 by only 

including the overall best performance among each 

feature theme subset. Results for random clustering are 

omitted to enhance visualization.  

 

Clustering based on acquisition order alone (‘t’) yields a 

best AMI of approximately 0.21. We use this as a 
performance baseline since clustering based on 

acquisition order is equivalent to periodic sampling:  

each cluster will have 
;
q  images, and cluster centroids 

will be located at every T ;
�qX images in the sequence. 

Varying the number of clusters n, selects every $th 
image for any $.  
 

 
Figure 5: Best AMI for each subset of feature themes 

(edge, color, frequency, and time) in an exhaustive 

parameter search. The horizontal line separates feature 

themes whose performances are “close to” or below that of 

acquisition order. 

 

We discard feature theme combinations whose best 

performances were near or below that obtained by 

acquisition order (0.21). Figure 5 illustrates this 

threshold with a horizontal line.  

 

Increasing the number of subimages improves the 

clustering AMI for nearly all theme combinations. In 

general AMI does not exceed 0.26 for any subset of 
features unless collected under 16 subimages. The 

exception to both of these statements is the FT 

combination (frequency and time features). For 

frequency and frequency/time combinations a single 

subimage is most effective. For one subimage, the FT 

features yield the highest overall AMI of 0.343.  We 
will consider this combination exclusively in the 

analysis that follows. 

 

4B. Frequency-Space & Time Features 

In further investigating clusterings with FT features, we 

first verify that larger numbers of subimages will 

statistically lower performance for our dataset. We fix 

n = 5 and use the ideal number of PCA components for 
1, 4, 9, and 16 subimages. The ideal is determined by 

the highest mean AMI for 100 trials for all possible 

numbers of principal components up to the original 

dimensionality. Figure 6 displays these results. 

 



 

 
Figure 6: Clustering with FT Features, k=5, "ideal" value 

of PCA used for each subimage. The solid and dotted 

horizontal lines represent mean AMI over 100 trials of 

acquisition order and random clustering, respectively. 

 

Figure 6 demonstrates that greater numbers of 

subimages fail to improve clustering performance of FT 

features, even with ideal numbers of PCA components. 

 

We next consider the utility of PCA for one subimage. 

This is an appropriate question since the FT 

combination may not require all five features for 

optimal performance. 

 

 
Figure 7: Clustering w/ FT features, k=5, 1 subimage, 

varying number of principal components used. The solid 

and dotted horizontal lines represent mean AMI over 100 

trials of acquisition order and random clustering, 

respectively. 

 

We see that there is no statistical significance between 

the base feature set and a compressed feature set of 

dimensionality 2 or greater (Figure 7). Designers can 

opt out of using PCA and suffer no detriment. An 

alternative interpretation is that there may be 

redundancy in our FT features that further testing could 

excise.  We leave this to future work. 

 

Finally, we vary the numbers of clusters within 1 

subimage.  

 

 
Figure 8: Clustering w/ FT features, 1 subimage, no PCA, 

varying number of clusters, k. The solid and dotted 

horizontal lines represent mean AMI over 100 trials of 

acquisition order and random clustering, respectively. 

 

As expected, Figure 8 shows optimal performance when 

the number of k-means clusters matches that used in the 

expert’s manual evaluation. 

 

Finally, we compare the results of clustering with FT 

features against methods based on acquisition order and 

random clustering in Figure 9. 

 

 
Figure 9: Comparison of 100 trials of clusterings with FT 

features against acquisition order and random clusterings. 

 

Random clustering results in a low, fixed performance 

score and clustering with frequency and time features 

consistently outperforms clustering based on time alone. 

 



 

 
Figure 10: Comparison of exemplary images from an 

expert clustering (top) against k-means with FT features, 1 

subimage, no PCA (bottom). 

For qualitative observations, Figure 10 shows 

exemplary images from the expert clustering (top) 

compared with exemplars from k-means with FT 

features (below). We did not ask the expert to rank 

intra-cluster images, and so took a random sampling 

from each. Exemplars for automated clustering were 

chosen as the images closest to cluster centroids.  

Exemplars for clusters 2 and 5 show images 

primarily containing horizons and so, together, 

corresponds well to the “Horizon” expert cluster. 

Exemplars for cluster 4 contain images with 

significant cloud presence, corresponding well to the 

“More Clouds” expert cluster. Clusters 1 and 3 

contain an amalgam of ground-based imagery. 

6. DISCUSSION 

Our initial investigation revealed five features which 

outperform both random and acquisition order-based 

clustering. These features are relatively fast and simple 

to collect. The requisite Fourier transform is an �cde � 
operation [6] while the normalization, search for 

maxima (��(..�1), and energy sums (��)..��) are linear 
with respect to image size. PCA need not be used.  With 

a fixed number of iterations, k-means runs in linear 

time. Therefore the total algorithmic complexity is sub-

polynomial in image size and linear in the number of 

images. 

 

The computational cost of the Fourier transform may be 

reduced if, in future work, it were found that these 

features worked as effectively on thumbnail-sized 

images or independent subimages. 

 

It is well known that solutions provided by k-means are 

sensitive to initialization. In our results, we see that 

performance can vary by as much as 0.05 AMI, but it 

never underperforms clustering based on acquisition 

order. Even so, there has been significant work on 

clever initialization of k-means that tends to improve 

both performance and runtime (e.g. [1]). These should 

be considered for future work. 

 

In our offline experiments features were standardized to 

a common scale. In an online environment, measures 

would have to be taken to find an appropriate scale. 

For the FT features, this would be simple as ��(..�1 
could be normalized, and ��)..�� already range between 
0, … , 1.  
 

Exploration of domain-specific features would also be 

useful. Determining methods that reliably form clusters 

for specific terrain (or its lower-level counterpart, 

texture) could aid specific science objectives. Beyond 

forming clusters based on terrain, it might also be 

interesting to consider forming clusters based on raw 

image quality. That is, can we easily set aside images 

which are marred with noise or sensor artifacts, or were 

collected with unfocused optics? 

 

Finally, we are comparing against a single expert. The 

preliminary results should be verified against additional 

experts and datasets.  

 

7. CONCLUSION 

We have explored onboard, computationally 

inexpensive clustering for improving the science return 

of missions where more data can be collected than 

returned for human observation. Motivated by the 

potential for the aerial exploration of Titan via an 

aerobot, we have collected an Earth-based aerial image 

dataset and compared k-means clustering with that of a 

planetary volcanologist. Among 21 low-level features 

accounting for color, texture, spatial and temporal 

arrangement, 5 were found which more closely match 

the manual clustering of an expert than do clusterings 

formed by random or periodic sampling. 
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